This is a post by NOAA Environmental Scientist Dr. Amy Merten.

The ShoreZone project photographs, maps, and collects information about Pacific Northwest shorelines, like in this view of Kruzof Island, Sitka Sound, Alaska. (NOAA Fisheries)
As Chief of the Spatial Data Branch in NOAA’s Office of Response and Restoration, my focus is all about data. In particular, that means figuring out how to access data related to oil spills: the type of information useful for planning before a spill and for the response, environmental injury assessment, and restoration after a spill. Once we get that data, which often comes from other science agencies, universities, and industry, we can then ingest it into Arctic ERMA®, NOAA’s online mapping tool for environmental disaster data. While at the Alaska Marine Science Symposium this week, I have spent much of my time working with experts who provide and manage that kind of data.
For example, the Alaska Ocean Observing System (AOOS) provides real-time and historical coastal data to multiple stakeholders, including NOAA for Arctic ERMA. AOOS is also the host for the newly signed data-sharing agreement [PDF] between NOAA and three oil companies (Shell, ConocoPhillips, and StatOil). These companies have agreed to share the physical oceanographic, geological, and biological data they have been collecting near areas of Arctic offshore oil and gas activities since 2009. This is an unprecedented amount of data that the industry now is sharing with the federal government and the public. The data are available at www.aoos.org.
My colleague and our Arctic ERMA geographic information system (GIS) expert, Zach Winters-Staszak, attended the Arctic Mapping Workshop sponsored by our partners at the University of Alaska Fairbanks GINA program. Their geographic information network gives us access to high-resolution base maps, imagery, high frequency radar, ice radar, webcams, and more. Zach learned about new data sets and new ways for pulling high impact data into Arctic ERMA.
Another helpful information source I learned more about was NOAA’s ShoreZone project. ShoreZone [PDF] is a popular Pacific Northwest dataset of high-resolution aerial videos and photographs of the shoreline in Alaska, British Columbia, Washington, and Oregon at extreme low tide. The photos and videos are augmented with habitat classifications of the different zones along the shoreline, such as salt marsh or kelp beds. We already pull in ShoreZone data layers into our Arctic and Pacific Northwest ERMA sites.
These data are valuable for preparedness and response to oil spills and for understanding places where oil and marine debris may accumulate naturally. It’s especially useful for understanding what the shoreline might look like before going out to survey for signs of oil or marine debris accumulation. It can help you decide how you’re going to access the shore (boat, helicopter, on foot) and what you might expect to find. ShoreZone surveyed the Kotzebue and North Slope regions of the Alaskan Arctic this past summer, which we’re excited to draw into Arctic ERMA when they are available.
Read more about Arctic ERMA and our plans for this environmental data tool.

Dr. Amy Merten is pictured here with children from the Alaskan village of Kivalina. She was in Alaska for an oil spill workshop in the village of Kotzebue.
Amy Merten is the Spatial Data Branch Chief in NOAA’s Office of Response and Restoration. Amy developed the concept for the online mapping tool ERMA (Environmental Response Mapping Application). ERMA was developed in collaboration with the University of New Hampshire. She expanded the ERMA team at NOAA to fill response and natural resource trustee responsibilities during the 2010 Deepwater Horizon/BP oil spill. Amy oversees data management of the resulting oil spill damage assessment. She received her doctorate and master’s degrees from the University of Maryland.
